A model for the hydrogen coma of a comet on the basis of the Monte Carlo method is presented. In this model isotropic ejections of H atoms produced by photodissociation of H 2O and OH, thermalization of the H atoms due to collisions with ambient H 2O molecules, and the solar radiation pressure have been taken into account. A production spectrum of H atoms from OH is evaluated by using the predissociation rates and the level populations of OH, confirming that the spectrum has a sharp peak around 8.0 km sec −1 with the standard deviation of 0.1 km sec −1. Including the above effects, velocity distribution functions of the H atoms at various positions in the coma for the first time, as well as their density and outflow velocity profiles, have been calculated. It is pointed out that the collisional thermalization process in the inner coma is an important factor at small heliocentric distances in determining the density profiles and the velocity distributions. It is shown that thermalization leads to an increase in the H density in the inner coma larger than those expected from other models such as the vectorial model, in which collision is not taken into account. Lyman α isophotes and its line profiles in the optically thin region are computed by using the velocity distribution function.