Hybrid organic-inorganic halide perovskites (HOIPs) have garnered a significant amount of attention due to their exceptional photoelectric conversion efficiency. However, they still face considerable challenges in large-scale applications, primarily due to their instability. One key factor influencing this instability is the lattice softness attributed to the A-site cations. In this study, we investigated the effects of four different A-site cations (MA, FA, EA, and GA) on the lattice softness of perovskites by using a combination of ab initio molecular dynamics and first-principles calculations. Our results demonstrate that an increase in the number of hydrogen bonds for A-site cations correlates with enhanced lattice and atomic fluctuations, resulting in a reduction in the bulk modulus and an increase in the lattice softness. The strength of hydrogen bonding of the A-site cation increases the rotational energy barrier of the cation, along with the formation energy and kinetic coupling between the A-site cation and the [PbI6]4- octahedron. Consequently, this increases the lifetime of hydrogen bonding and enhances the rigidity of the perovskite lattice. Notably, we found that EA cations, which exhibit stronger hydrogen bonding with fewer total hydrogen bonds, can limit the rotation of the A-site cation, inhibit the rocking motion of the [PbI6]4- octahedron, and thereby increase the rigidity of the inherently soft perovskite lattice, ultimately enhancing the stability of the material. Our findings elucidate the effect of hydrogen bonding in A-site cations on the lattice softness of perovskites, providing valuable theoretical insights for the design of more stable HOIPs.
Read full abstract