It was shown by quantum chemical methods and 1H NMR spectroscopy that in the series of prototropic tautomeric quinazolin-4-ones with hydrogenated 1,3-diazaheterocycles annulated at positions 2 and 3, namely, imidazole, pyrimidine, or [1,3]diazepine (compounds 1–3, respectively), the 1H-tautomeric form strongly predominates in the gas phase and in solutions regardless of the nature of these cycles. Tautomerization of tricycles 1–3 occurs via the intermolecular mechanism to form as intermediates hydrogen-bonded cyclodimers of these compounds or their cyclosolvates with proton-donor solvents. The key step of the reaction is the intraassociated concerted double proton transfer, which can proceed in nearly synchronous and asynchronous modes. In particular, double proton transfer in cyclodimers of quinazolinones 1–3 is asynchronous and proceeds with the formation of solvate-stabilized polar transition states, which are similar in structure to ionic intermediates of the nonconcerted double proton transfer.
Read full abstract