Poiseuille flow is a fundamental flow in fluid mechanics and is driven by a pressure gradient in a channel. Although the rheology of active particle suspensions has been investigated extensively, knowledge of the Poiseuille flow of such suspensions is lacking. In this study, dynamic simulations of a suspension of active particles in Poiseuille flow, situated between two parallel walls, were conducted by Stokesian dynamics assuming negligible inertia. Active particles were modelled as spherical squirmers. In the case of inert spheres in Poiseuille flow, the distribution of spheres between the walls was layered. In the case of non-bottom-heavy squirmers, on the other hand, the layers collapsed and the distribution became more uniform. This led to a much larger pressure drop for the squirmers than for the inert spheres. The effects of volume fraction, swimming mode, swimming speed and the wall separation on the pressure drop were investigated. When the squirmers were bottom heavy, they accumulated at the channel centre in downflow, whereas they accumulated near the walls in upflow, as observed in former experiments. The difference in squirmer configuration alters the hydrodynamic force on the wall and hence the pressure drop and effective viscosity. In upflow, pusher squirmers induced a considerably larger pressure drop, while neutral and puller squirmers could even generate negative pressure drops, i.e. spontaneous flow could occur. While previous studies have reported negative viscosity of pusher suspensions, this study shows that the effective viscosity of bottom-heavy puller suspensions can be negative for Poiseuille upflow, which is a new finding. The knowledge obtained is important for understanding channel flow of active suspensions.
Read full abstract