Spatial nonlocality affects the plasmonic characteristics of nanostructures. We used the quasi-static hydrodynamic Drude model to obtain the surface plasmon excitation energies in various metallic nanosphere structures. The surface scattering and radiation damping rates were phenomenologically incorporated into this model. We demonstrate that spatial nonlocality increases the surface plasmon frequencies and total plasmon damping rates in a single nanosphere. This effect was amplified for small nanospheres and higher multipole excitation. In addition, we find that spatial nonlocality reduces the interaction energy between two nanospheres. We extended this model to a linear periodic chain of nanospheres. Then we obtain the dispersion relation of surface plasmon excitation energies using Bloch’s theorem. We also show that spatial nonlocality decreases the group velocities and energy decay lengths of the propagating surface plasmon excitations. Finally, we demonstrated that the effect of spatial nonlocality is significant for very small nanospheres separated by short distances.
Read full abstract