Abstract

We consider finite element discretizations of Maxwell’s equations coupled with a non-local hydrodynamic Drude model that accurately accounts for electron motions in metallic nanostructures. Specifically, we focus on a posteriori error estimation and mesh adaptivity, which is of particular interest since the electromagnetic field usually exhibits strongly localized features near the interface between metals and their surrounding media. We propose a novel residual-based error estimator that is shown to be reliable and efficient. We also present a set of numerical examples where the estimator drives a mesh adaptive process. These examples highlight the quality of the proposed estimator, and the potential computational savings offered by mesh adaptivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.