The main challenge in treating aged soils highly contaminated with total petroleum hydrocarbons (TPH) is to enhance their bioavailability for microbial degradation. Hydrocarbons in soils undergo chemical changes that make them more resistant to biodegradation. This study investigates toluene's efficacy in enhancing the biodegradation of aged hydrocarbon-contaminated soil containing 292,000mg TPH kg-1 dry soil. Toluene's effect was compared between solid phase (SOP) and slurry phase (SLP) treatments using a microbial consortium isolated from Cyperus laxus rhizosphere. TPH biodegradation and microbial respiration were measured, the latter to estimate the respiratory quotient (RQ, the ratio between moles of carbon dioxide released and moles of oxygen absorbed during respiration). Toluene significantly accelerated TPH biodegradation in both treatments, achieving ~ 30% higher removal than in a non-solvent control, possibly through improved bioavailability of aromatic compounds and other low molecular weight compounds. According to the RQ analysis, toluene enhanced microbial respiratory processes and hydrocarbon catabolism with higher hydrocarbon mineralization (RQ = ~ 0.5) in both SOP and SLP assays. Our results reveal toluene's potential to increase hydrocarbon availability and microbial degradation efficiency in aged contaminated soils; its use in various bioremediation techniques could be of broad applicability across diverse soil types and pollutants.
Read full abstract