Abstract

The intensive production of fossil fuels has led to serious polycyclic aromatic hydrocarbon (PAH) contamination in water and soil environments (as PAHs are typical types of emerging contaminants). Bio-Fenton, an alternative to Fenton oxidation, which generates hydrogen peroxide at a nearly neutral pH condition, could ideally work as a pretreatment to recalcitrant organics, which could be combined with the subsequent biological treatment without any need for pH adjustment. The present study investigated the performance of a Bio-Fenton-assisted biological process for mineralization of three typical types of PAHs. The hydrogen peroxide production, PAH removal, overall organic mineralization, and microbial community structure were comprehensively studied. The results showed that the combined process could achieve efficient chemical oxygen demand (COD) removal (88.1%) of mixed PAHs as compared to activated sludge (33.1%), where individual PAH removal efficiencies of 99.6%, 83.8%, and 91.3% were observed for naphthalene (NAP), anthracene (ANT), and pyrene (PYR), respectively, with the combined process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.