Abstract Inorganic systems containing two or more kinds of anions, such as rare-earth metal oxyhydrides, have a number of interesting properties that can be used in the design and development of new functional materials with desired characteristics. Chemical synthesis of these materials can be accomplished by oxidation of metal hydrides. However, the oxidation process of a metal hydride is directly accompanied by the release of hydrogen; both processes are a combination of two sequential reactions. This is usually not favorable for the formation and crystallization of the ternary oxyhydride composition. One possible way to overcome this problem is to introduce an appropriate amount of oxygen atoms into certain interstitial positions adjacent to the metal sites of the hydride lattice. Guided by the ideas of orthogonality, we have proposed a theoretical model capable of providing a thorough understanding of the chemical processes occurring in a multicomponent system at the molecular level. This model opens the way for predicting a wide range of new, stable multi-anion compounds of different compositions. It can also control functionality by adding noncovalent interactions between different kinds of anions, which can lead to the formation of chiral structures or a significant increase in ferro- and piezoelectric properties.