Abstract

Hydrogen is likely one of the light elements in the Earth’s core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) iron lattice up to 12 GPa and 1200 K using the in situ neutron diffraction method. The transition temperatures from the body-centered cubic and the double-hexagonal close-packed phases to the fcc phase were higher than reported previously. At pressures <5 GPa, the hydrogen content in the fcc iron hydride lattice (x) was small at x < 0.3, but increased to x > 0.8 with increasing pressure. Hydrogen atoms occupy both octahedral (O) and tetrahedral (T) sites; typically 0.870(±0.047) in O-sites and 0.057(±0.035) in T-sites at 12 GPa and 1200 K. The fcc lattice expanded approximately linearly at a rate of 2.22(±0.36) Å3 per hydrogen atom, which is higher than previously estimated (1.9 Å3/H). The lattice expansion by hydrogen dissolution was negligibly dependent on pressure. The large lattice expansion by interstitial hydrogen reduced the estimated hydrogen content in the Earth’s core that accounted for the density deficit of the core. The revised analyses indicate that whole core may contain hydrogen of 80(±31) times of the ocean mass with 79(±30) and 0.8(±0.3) ocean mass for the outer and inner cores, respectively.

Highlights

  • The Earth’s core has supposed to be constituted by iron with ~10% nickel and some light elements

  • We directly determined the crystallographic positions of hydrogen atoms and their effects on cell volumes for a high-pressure polymorph, fcc iron hydride, using neutron powder diffraction measurements

  • The present analysis showed that hydrogen atoms enter both O- and T-sites

Read more

Summary

Introduction

The Earth’s core has supposed to be constituted by iron with ~10% nickel and some light elements. In order to estimate the hydrogen contents in the inner and outer cores, previous studies have determined phase relations, equations of state, magnetic properties, and the sound velocity of iron hydride FeHx by using synchrotron X-ray[1,2,3,4,5,6,7] and theoretical works[8]. We directly determined the crystallographic positions of hydrogen atoms and their effects on cell volumes for a high-pressure polymorph, fcc iron hydride, using neutron powder diffraction measurements. This technique provided a precise determination of the hydrogen content in the samples used in previous studies on the phase relations and equation of state of iron hydride. The green dotted line and the blue dashed line represent the phase boundaries of FeHx and Fe as reproduced from previous studies, respectively[15,16,26]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.