Coal-gangue recognition technology plays an important role in the intelligent realization of integrated working faces and coal quality improvement. However, the existing methods are easily affected by high dust, noise, and other disturbances, resulting in unstable recognition results that make it difficult to meet the needs of industrial applications. To realize accurate recognition of coal-gangue in noisy environments, this paper proposes an end-to-end multi-scale feature fusion convolutional neural network (MCNN-BILSTM) based gangue recognition method, which can automatically learn and fuse complementary information from multiple signal components of vibration signals. It combines traditional filtering methods and the idea of multi-scale learning, which can expand the breadth and depth of the feature learning process. the breadth and depth of the feature learning process. Moreover, to strengthen the expression of key features, a feature weighting method based on the attention mechanism is combined to give adaptive weights to different features. Finally, the experimental platform of a tail beam of coal-gangue impact hydraulic support is built, and several comparative experiments are carried out. The comprehensive comparison experiments show that the method shows strong adaptability, robustness, and noise resistance under various complex noise environments, and is suitable for complex practical industrial sites.
Read full abstract