AbstractPost‐injection seismicity associated with hydraulic stimulation has posed great challenges to hydraulic fracturing operations. This work aims to identify the causal mechanism of the post shut‐in ML 2.9 earthquake in August 2019 at the Preston New Road, UK, amongst three plausible mechanisms, that is, the post shut‐in pore pressure diffusion, poroelastic stressing on a non‐overpressurized fault, and poroelastic stressing on an overpressurized fault. A 3D fully coupled poroelastic model that considers the poroelastic solid deformation, fluid flow in both porous rocks and fracture structures, and hydrofracturing‐induced pressure perturbations was developed to simulate the hydromechanical response of the shale reservoir formation to hydraulic fracturing operations at the site. Based on the model results, Coulomb stress changes and seismicity rate were further evaluated on the PNR‐2 fault responsible for the earthquake. Model results have shown that increased pore pressure plays a dominant role in triggering the fault slippage, although the poroelastic stress may have acted to promote the slippage. Amongst the three plausible mechanisms, the post shut‐in pore pressure diffusion is the most favored in terms of Coulomb stress change, seismicity rate, timing of fault slippage and rupture area. The coupled modeling results suggested that the occurrence of the post shut‐in ML 2.9 earthquake was a three‐staged process, involving first propagation of fracture tips that stimulated surrounding reservoir formations, then hydraulic connection with and subsequent pore pressure diffusion to the conductive PNR‐2 fault, and eventually fault activation primarily under the direct impact of increased pore pressure.
Read full abstract