The development of carbonate formations with hydraulic fracturing is a very interesting and controversial process. In contrast to terrigenous formations, zonal stimulation can be performed by both acid and proppant fracturing methods, and the abundance of process variations expands the options even further. Although there is a general concept of choosing hydraulic fracturing technology depending on the geological and physical characteristics of the formation, the qualitative choice is complicated by the fact that effective solutions for one reservoir could not show the same efficiency in similar conditions at another one. For this reason, from the point of view of working with carbonates, to have as extensive experience as possible in various well conditions in order to minimize production risks and costs associated with the choice of approach and zonal stimulation technology. The study aims to provide a technological overview of effective fracturing solutions for carbonate formations, seeking to understand their features and applicability depending on well and geological conditions. An important place is given to the communication of experience in the application of stimulation technologies that have proven themselves at carbonate formations of Gazprom Neft and show the risks and limitations that can be encountered when choosing a particular solution. It describes experience in hydraulic and multistage fracturing, technologies, approaches and their features depending on geological conditions of carbonate formations. The study also outlines the actual experience of using hydraulic fracturing technologies at carbonate formations, their comparative effectiveness, and the most successful practices based on the actual experience of the work performed. Much attention is paid to comparing the effectiveness of acid fracturing, acid-proppant fracturing, and variations of fracturing on viscous acid compositions. The findings not only give an idea of the technological diversity of the types of zonal stimulation, but also highlights their comparative effectiveness in geological and physical conditions of the reservoir. The reflected experience can help to choose more effective solutions in the development of similar formations, reduce risks at early stages of preparation for fracturing and helps in deciding on the choice of stimulation technology, thereby improving the quality and efficiency of fields development.
Read full abstract