An unstructured grid CFD code capable of handling arbitrary polyhedra, named ‘‘LS-FLOW,’’ is developed for aerodynamic analyses of complex geometries. Through a series of numerical test cases, it is demonstrated that LS-FLOW can handle both structured and body-fitted/Cartesian hybrid unstructured grids successfully. Then, the code is validated by comparison with experimental data and theoretical solutions. In addition, it is shown that when a Baldwin-Lomax algebraic turbulence model is employed on the body-fitted/Cartesian grid, the portion of the body-fitted grid should be large enough to contain the whole boundary-layer. Finally, LS-FLOW is applied to a rocket configuration, and its future prospects are addressed.