Scheduling problems are one of the most researched topics in the field of operational research. Scheduling problem models have evolved and branched because of the wide range of products, standards, and customer requirements. Recently, the partial job shop scheduling problem, which is a general model of shop scheduling problems, has become a new scheduling problem. Operations in this model are partially ordered, and the order varies for each job. Several problems studied independently in the literature, such as the group shop, mixed shop, job shop, and open shop scheduling problems, are considered special cases of the partial shop scheduling model. Because ant algorithms are known in the literature as effective tools for solving combinatorial optimization problems, this study proposed an ant colony (AC) algorithm for solving partial shop problems with an objective function to minimize makespan. The AC method was examined and evaluated on the renowned “Taillerd” benchmark instances. It was then compared with the hybrid scatter search (HSS) and iterated tabu search (ITS) methods. The AC algorithm’s average deviation for 80 instances ranged between 0% and 1.78%. The AC algorithm outperforms the HSS and ITS methods, according to the computational findings; where the average percentage relative deviation for AC is 0.66%, compared with 0.99% for ITS and 10.14% for HSS.