Abstract

In this paper, a new bi-objective fuzzy portfolio selection model is proposed, for which Sharp ratio (SR) and Value at Risk ratio (VR) of a portfolio are chosen as objectives. SR is an important nonsystematic risk measurement that examines the investment risk by aspiring the diversification of the capital allocation. On the other hand, VR measures the systematic risk, which reduces the largest loss of an investment at a given confidence level. The proposed fuzzy portfolio model assumes both SR and VR as maximization objectives for which the associated fuzzy parameters are considered as triangular fuzzy numbers. The proposed model is solved using multi-objective genetic algorithms, namely multi-objective cellular genetic algorithm (MOCell), archive-based hybrid scatter search (AbYSS), and nondominated sorting genetic algorithm II (NSGA-II). We have used a data set from the Shenzhen Stock Exchange to illustrate the performance of the proposed model and algorithms. Finally, a comparative study in terms of five standard performance metrics is presented, among the MOCell, AbYSS, and NSGA-II algorithms that are mentioned extensively in various research articles to exhibit the best suitable algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.