In this paper, a new hydrogen peroxide electrochemical sensor based on the synergistic modification of nitrogen-doped porous carbon (NPC) and carbon nanohybrid aerogel (CNA) is proposed. NPC has been successfully synthesized from porous polyacrylonitrile (PAN) precursor by pre-oxidation to obtain adequate pyridinic-N, which contributes to enhance the electrocatalytic activity. Simultaneously, CNA has been also prepared by self-assembly in a hydrothermal environment without any interference followed by vacuum freeze drying. The final products were characterized by diversiform techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD). The results showed that the NPC with 23.18% pyridinic-N exhibited well-defined and interconnected three-dimensional (3D) porous microstructure and CNA which encapsulates [Formula: see text]-Fe2O3 particles was obtained. The sensor fabricated by NPC and CNA delivered a wide linear range from 60[Formula: see text][Formula: see text]M to 1680[Formula: see text][Formula: see text]M ([Formula: see text]) and 1680[Formula: see text][Formula: see text]M to 3335[Formula: see text][Formula: see text]M ([Formula: see text]) with sensitivities of 3.98[Formula: see text][Formula: see text]A mM[Formula: see text] and 5.56[Formula: see text][Formula: see text]A mM[Formula: see text], respectively. Furthermore, the obtained sensor showed low detection limit (4.478[Formula: see text][Formula: see text]M, [Formula: see text]/[Formula: see text]), good selectivity and repeatability, rapid response and satisfying practicability.
Read full abstract