Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H2 production by electrochemical water splitting, but it remains a great challenge. Herein, we reported two kinds of MoO3-polyoxometalate hybrid nanobelt superstructures (MoO3-POM HNSs, POM = PW12O40 and SiW12O40) using a simple hydrothermal method. Such superstructure with highly uniform nanoparticles as building blocks can expose more surface atoms and emanate increased specific surface area. The incorporated POMs generated abundant oxygen vacancies, improved the electronic mobility, and modulated the surface electronic structure of MoO3, allowing to optimize the H* adsorption/desorption and dehydrogenation kinetics of catalyst. Notably, the as-prepared MoO3-PW12O40 HNSs electrodes not only displayed the low overpotentials of 108 mV at 10 mA/cm2 current density in 0.5 mol/L H2SO4 electrolyte but also displayed excellent long-term stability. The hydrogen evolution reaction (HER) performance of MoO3-POM superstructures is significantly better than that of corresponding bulk materials MoO3@PW12O40 and MoO3@SiW12O40, and the overpotentials are about 8.3 and 4.9 times lower than that of single MoO3. This work opens an avenue for designing highly surface-exposed catalysts for electrocatalytic H2 production and other electrochemical applications.
Read full abstract