AbstractThis paper presents the experimental validation and field testing of a novel hybrid mobile robot (HMR) system using a complete physical prototype. The mobile robot system consists of a hybrid mechanism whereby the locomotion platform and manipulator arm are designed as one entity to support both locomotion and manipulation symbiotically and interchangeably. The mechanical design is briefly described along with the related control hardware architecture based on an embedded onboard wireless communication network between the robot's subsystems, including distributed onboard power using Li‐ion batteries. The paper focuses on demonstrating through extensive experimental results the qualitative and quantitative field performance improvements of the mechanical design and how it significantly enhances mobile robot functionality in terms of the new operative locomotion and manipulation capabilities that it provides. In terms of traversing challenging obstacles, the robot was able to surmount cylindrical obstacles up to 0.6‐m diameter; cross ditches with at least 0.635‐m width; climb and descend step obstacles up to 0.7‐m height; and climb and descend stairs of different materials (wood, metal, concrete, plastic plaster, etc.), different stair riser and run sizes, and inclinations up to 60 deg. The robot also demonstrated the ability to manipulate objects up to 61 kg before and after flipping over, including pushing capacity of up to 61 kg when lifting objects from underneath. The above‐mentioned functions are critical in various challenging applications, such as search and rescue missions, military and police operations, and hazardous site inspections. © 2010 Wiley Periodicals, Inc.
Read full abstract