We present a hybrid learning method bridging the fields of recurrent neural networks, unsupervised Hebbian learning, vector quantization, and supervised learning to implement a sophisticated image and feature segmentation architecture. This architecture is based on the competitive layer model (CLM), a dynamic feature binding model, which is applicable on a wide range of perceptual grouping and segmentation problems. A predefined target segmentation can be achieved as attractor states of this linear threshold recurrent network, if the lateral weights are chosen by Hebbian learning. The weight matrix is given by the correlation matrix of special pattern vectors with a structure dependent on the target labeling. Generalization is achieved by applying vector quantization on pair-wise feature relations, like proximity and similarity, defined by external knowledge. We show the successful application of the method to a number of artifical test examples and a medical image segmentation problem of fluorescence microscope cell images.