The popularity of grape (Vitis sp.) and wine production in the upper midwest region of the United States is increasing steadily. The development of several cold-climate, interspecific-hybrid grape cultivars (northern hybrids) since the 1980s has improved the probability of success for both new and established vineyards in this area of the country, but long-term data describing the performance of these cultivars in midwestern U.S. climates are needed to both aid growers in their choice of cultivars and to provide them with information about factors important in their management. We characterized the long-term winterhardiness and annual phenology of 12 cold-climate northern hybrid grape cultivars (two established cultivars, five newer cultivars, and five advanced selections) grown in a randomized and replicated field plot in central Iowa, an area that offers a warm growing season and very cold dormant season for grape culture. The established cultivars included in the study were Frontenac and St. Croix. The newer cultivars evaluated were Arandell, Corot noir, La Crescent, Marquette, and Petit Ami, and the advanced selections were MN 1189, MN 1200, MN 1220, MN 1235, and MN 1258. The grape trial was established in 2008, and vines were evaluated from 2011 through 2017 for annual timing of budbreak, bloom, veraison, and harvest, as well as winter survival of vines and primary buds. As a group, the northern hybrids in our trial showed good winterhardiness of vines but variable hardiness of primary buds across the six winters, which ranged from warmer than average to much colder than average. In Iowa climate, buds of northern hybrids were generally most vulnerable to cold temperature damage from late-winter (March) low-temperature events or from extreme midwinter low-temperature events. The bud hardiness of individual cultivars ranged from very hardy (Frontenac, Marquette, and MN 1235) to poor hardiness (Arandell, Corot noir, Petit Ami, and MN 1189), with all 12 cultivars showing good bud survival during Iowa winters that were warmer than average, but the less-hardy cultivars showing poor bud survival during winters that were colder than average. Evaluations of phenology revealed that heat accumulation measured in growing degree days with a threshold of 50 °F was not a reliable index for predicting the timing of annual developmental stages for the cultivars we tested. Our results indicate that northern hybrids rely on other factors in addition to heat accumulation for guiding annual development, and that factors such as photoperiod likely have a strong influence on phenological timing during seasons with unusual weather patterns. We determined that none of the cultivars were vulnerable to cold temperature damage to fruit before harvest in Iowa’s climate, but that three of the cultivars (Arandell, Marquette, and MN 1235) were highly vulnerable to shoot damage from spring freeze events, and four others (Corot noir, La Crescent, MN 1200, and MN 1220) were moderately vulnerable to cold damage to shoots in spring. An itemized summary of the relative hardiness, vulnerabilities, and timing of phenological stages of the 12 cultivars is provided to aid growers in selection and management of grape cultivars for Iowa climate. Based on hardiness and phenology, four of these cultivars (Frontenac, MN 1258, MN 1220, and MN 1200) have the lowest risk of issues related to cold temperatures.