Conway's game of Life provides an interesting testbed for exploring issues in formulation, symmetry, and optimization with constraint programming and hybrid constraint programming/integer programming methods. We consider three Life pattern-creation problems: finding maximum density still-Lifes, finding smallest immediate predecessor patterns, and finding period-2 oscillators. For the first two problems, integrating integer programming and constraint programming approaches provides a much better solution procedure than either individually. For the final problem, the constraint programming formulation provides the better approach.