Purified oligomers of hyalobiuronic acid are indispensable tools to elucidate the physiological and pathophysiological role of hyaluronan degradation by various hyaluronidase isoenzymes. Therefore, we established and validated a novel sensitive, convenient, rapid, and cost-effective high performance thin layer chromatography (HPTLC) method for the qualitative and quantitative analysis of small saturated hyaluronan oligosaccharides consisting of 2–4 hyalobiuronic acid moieties. The use of amino-modified silica as stationary phase allows a simple reagent-free in situ derivatization by heating, resulting in a very low limit of detection (7–19pmol per band, depending on the analyzed saturated oligosaccharide). By this derivatization procedure for the first time densitometric quantification of the analytes could be performed by HPTLC. The validated method showed a quantification limit of 37–71pmol per band and was proven to be superior in comparison to conventional detection of hyaluronan oligosaccharides. The analytes were identified by hyphenation of normal phase planar chromatography to mass spectrometry (TLC–MS) using electrospray ionization. As an alternative to sequential techniques such as high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), the validated HPTLC quantification method can easily be automated and is applicable to the analysis of multiple samples in parallel.
Read full abstract