Light is a key environmental cue regulating photomorphogenesis and photosynthesis in plants. However, the molecular mechanisms underlying the interaction between light signaling pathways and photosystem function are unknown. Here, we show that various monochromatic wavelengths of light cooperate to regulate PSII function in Arabidopsis (Arabidopsis thaliana). The photoreceptors cryptochromes and phytochromes modulate the expression of HIGH CHLOROPHYLL FLUORESCENCE173 (HCF173), which is required for PSII biogenesis by regulating PSII core protein D1 synthesis mediated by the transcription factor ELONGATED HYPOCOTYL5 (HY5). HY5 directly binds to the ACGT-containing element ACE motif and G-box cis-element present in the HCF173 promoter and regulates its activity. PSII activity was decreased significantly in hy5 mutants under various monochromatic wavelengths of light. Interestingly, we demonstrate that HY5 also directly regulates the expression of the genes associated with PSII assembly and repair, including ALBINO3, HCF136, HYPERSENSITIVE TO HIGH LIGHT1, etc., which is required for the functional maintenance of PSII under photodamaging conditions. Moreover, deficiency of HY5 broadly decreases the accumulation of other photosystem proteins besides PSII proteins. Thus, our study reveals an important role of light signaling in both biogenesis and functional regulation of the photosystem and provides insight into the link between light signaling and photosynthesis in land plants.
Read full abstract