Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation.
Read full abstract