The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption. This study successfully fabricated moss biochar (BC) and magnetically modified moss biochar (MBC), and explored their adsorption performance for enrofloxacin (ENR). Characterization analyses revealed that the specific surface area, total pore volume, and the quantity of functional groups of the MBC were significantly larger than those of the BC. The Langmuir isotherm model suggests that the maximum adsorption capacities of BC and MBC for ENR are 7.24mgg⁻1 and 11.62mgg⁻1. The adsorption process conforms to a pseudo-second-order kinetic model. Studies carried out at different temperatures disclose the spontaneous and endothermic thermodynamic characteristics of the system. Under neutral conditions, the adsorption efficiency attains its peak. The existence of various coexisting ions in water exerts a negligible influence on the adsorption process; furthermore, when the concentration of humic acid (HA) ranges from 0 to 20mg/L, the removal rate remains above 90%. In actual water samples, the antibiotic removal rate can be as high as 96.84%. After three cycles of reuse, the structure of MBC remains unchanged while maintaining a high removal efficiency. The primary mechanisms for antibiotic adsorption by MBC involve electrostatic interactions, hydrophobic interactions, pore-filling effects, hydrogen bonding, and π-π interactions. This reusable magnetic moss biochar provides a promising research direction for effectively eliminating antibiotics from water sources.
Read full abstract