Current robot designs often reflect an anthropomorphic approach, apparently aiming to convince users through an ideal system, being most similar or even on par with humans. The present paper challenges human-likeness as a design goal and questions whether simulating human appearance and performance adequately fits into how humans think about robots in a conceptual sense, i.e., human's mental models of robots and their self. Independent of the technical possibilities and limitations, our paper explores robots' attributed potential to become human-like by means of a thought experiment. Four hundred eighty-one participants were confronted with fictional transitions from human-to-robot and robot-to-human, consisting of 20 subsequent steps. In each step, one part or area of the human (e.g., brain, legs) was replaced with robotic parts providing equal functionalities and vice versa. After each step, the participants rated the remaining humanness and remaining self of the depicted entity on a scale from 0 to 100%. It showed that the starting category (e.g., human, robot) serves as an anchor for all former judgments and can hardly be overcome. Even if all body parts had been exchanged, a former robot was not perceived as totally human-like and a former human not as totally robot-like. Moreover, humanness appeared as a more sensible and easier denied attribute than robotness, i.e., after the objectively same transition and exchange of the same parts, the former human was attributed less humanness and self left compared to the former robot's robotness and self left. The participants' qualitative statements about why the robot has not become human-like, often concerned the (unnatural) process of production, or simply argued that no matter how many parts are exchanged, the individual keeps its original entity. Based on such findings, we suggest that instead of designing most human-like robots in order to reach acceptance, it might be more promising to understand robots as an own “species” and underline their specific characteristics and benefits. Limitations of the present study and implications for future HRI research and practice are discussed.