In the late 1960s and early 1970s, hypothalamic regulatory hormones were isolated, characterized and sequenced. Later, it was demonstrated hypothalamic and ectopic production of growth hormone-releasing hormone (GHRH) in normal and tumor tissues, of both humans and animals. Pituitary-type GHRH receptors (pGHRH-R) had been demonstrated to be expressed predominantly in the anterior pituitary gland but also found in other somatic cells, and significantly present in various human cancers; in addition, the expression of splice variants (SVs) of GHRH receptor (GHRH-R) has been found not only in the pituitary but in extrapituitary tissues, including human neoplasms. In relation to the prostate, besides the pGHRH-R, it has been detected the presence of truncated splice variants of GHRH-R (SV1-SV4) in normal human prostate and human prostate cancer (PCa) specimens; lastly, a novel SV of GHRH-R has been detected in human PCa. Signaling pathways activated by GHRH include AC/cAMP/PKA, Ras/Raf/ERK, PI3K/Akt/mTOR and JAK2/STAT3, which are involved in processes such as cell survival, proliferation and cytokine secretion. The neuropeptide GHRH can also transactivate the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER)-2. Thus, GHRH-Rs have become drug targets for several types of clinical conditions, including prostate-related conditions such as prostatitis, benign hyperplasia and cancer. Over the last fifty years, the development of GHRH-R receptor antagonists has been unstoppable, improving their potency, stability and affinity for the receptor. The last series of GHRH-R antagonists, AVR, exhibits superior anticancer and anti-inflammatory activities in both in vivo and in vitro assays.