USP28 contributes to tumorigenesis through modulating the lifespan of oncogenic factors such as c-Myc and ΔNp63, and it has been identified as a potential target for anti-cancer drug development. Currently, although quite a number of USP28 inhibitors have been developed, they all are still in preclinical research stage. Besides, none of them exhibits satisfying inhibition selectivity against USP28 over its closest homologue USP25. Here in this manuscript, a high-throughput screening aiming to discover USP28 inhibitors with novel scaffold and enhanced inhibition selectivity were conducted. After the primary screening and the second round of validation, Otilonium Bromide, an approved drug for treating irritable bowel syndrome, was identified to inhibit USP28′s activity with the IC50 value at 6.90 ± 0.90 μM. Besides, the drug exhibits a 3–4 folds inhibition selectivity against USP28 over USP25. According to the enzymatic kinetics analysis data and the hydrogen–deuterium exchange mass spectrometry results, Otilonium Bromide could bind to the allosteric pocket of USP28 and inhibit its activity in a reversible and non-competitive mode. The following performed cell-based assays revealed that the drug could cause cytotoxicity against human colorectal cancer cells and lung squamous carcinoma cells potentially through down-regulating USP28′s oncogenic substrates c-Myc and/or ΔNp63. Meanwhile, since Otilonium Bromide has been found to preferentially distribute to gastrointestinal tissues, we then evaluated its potential in the combination treatment of colorectal cancer cells with Regorafenib, which is an approved drug for colorectal cancer therapy. As expected, Otilonium Bromide could significantly enhance the sensitivity of colorectal cancer cells to Regorafenib.
Read full abstract