Recently, energy harvesting from human motion has attracted substantial research into its ability to replace conventional batteries for smart electronics. Human motion exhibits excellent potential to provide sustainable and clean energy for powering low-powered electronics, such as portable instruments and wearable devices. This review article reports on the piezoelectric, electromagnetic, and triboelectric energy harvesting technologies that can effectively scavenge biomechanical energy from human motion such as, walking, stretching, and human limb movement, as well as from small displacements (e.g., heartbeat, respiration, and muscle movement) inside the human body. Furthermore, various recent designs and configurations of human motion energy harvesters are presented according to their working mechanisms, device compositions, and performances. In order to provide insight into future research prospects, the paper also discusses the limitations, issues, and challenges of piezoelectric, electromagnetic, and triboelectric energy harvesting technologies for the development of smart electronics.