The pedunculopontine nucleus (PPN) is a small brainstem structure and has attracted attention as a potentially effective deep brain stimulation (DBS) target for the treatment of Parkinson's disease (PD). However, the in vivo location of PPN remains poorly described and barely visible on conventional structural magnetic resonance (MR) images due to a lack of high spatial resolution and tissue contrast. This study aims to delineate the PPN on a high-resolution (HR) atlas and investigate the visibility of the PPN in individual quantitative susceptibility mapping (QSM) images. We combine a recently constructed Montreal Neurological Institute (MNI) space unbiased QSM atlas (MuSus-100), with an implicit representation-based self-supervised image super-resolution (SR) technique to achieve an atlas with improved spatial resolution. Then guided by a myelin staining histology human brain atlas, we localize and delineate PPN on the atlas with improved resolution. Furthermore, we examine the feasibility of directly identifying the approximate PPN location on the 3.0-T individual QSM MR images. The proposed SR network produces atlas images with four times the higher spatial resolution (from 1 to 0.25 mm isotropic) without a training dataset. The SR process also reduces artifacts and keeps superb image contrast for further delineating small deep brain nuclei, such as PPN. Using the myelin staining histological atlas as guidance, we first identify and annotate the location of PPN on the T1-weighted (T1w)-QSM hybrid MR atlas with improved resolution in the MNI space. Then, we relocate and validate that the optimal targeting site for PPN-DBS is at the middle-to-caudal part of PPN on our atlas. Furthermore, we confirm that the PPN region can be identified in a set of individual QSM images of 10 patients with PD and 10 healthy young adults. The contrast ratios of the PPN to its adjacent structure, namely the medial lemniscus, on images of different modalities indicate that QSM substantially improves the visibility of the PPN both in the atlas and individual images. Our findings indicate that the proposed SR network is an efficient tool for small-size brain nucleus identification. HR QSM is promising for improving the visibility of the PPN. The PPN can be directly identified on the individual QSM images acquired at the 3.0-T MR scanners, facilitating a direct targeting of PPN for DBS surgery.
Read full abstract