Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) belong to the group of poly- and perfluoroalkyl substances (PFASs), which may accumulate in humans due to their limited excretion. To provide more insight into the active renal excretion potential of PFASs in humans, this work investigated in vitro the transport of three PFCAs (PFHpA, PFOA, PFNA) and three PFSAs (PFBS, PFHxS and PFOS) using OAT1-, OAT2- or OAT3-transduced human embryonic kidney (HEK) cells. Only PFHpA and PFOA showed clear uptake in OAT1-transduced HEK cells, while no transport was observed for PFASs in OAT2-transduced HEK cells. In OAT3-transduced HEK cells only PFHpA, PFOA, PFNA, and PFHxS showed clear uptake. To study the interaction with the transporters, molecular docking and dynamics simulation were performed for PFHpA and PFHxS, for which a relatively short and long half-life in humans has been reported, respectively. Docking analyses could not always distinguish the in vitro transported from the non-transported PFASs (PFHpA vs. PFHxS), whereas molecular dynamic simulations could, as only a stable interaction of the PFAS with the inner part of transporter mouth was detected for those that were transported in vitro (PFHpA with OAT1, none with OAT2, and PFHpA and PFHxS with OAT3). Altogether, this study presents in vitro and in silico insight with respect to the selected PFASs transport by the human renal secretory transporters OAT1, OAT2, and OAT3, which provides further understanding about the differences between the capability of PFAS congeners to accumulate in humans.