Abstract
Drug interactions can induce significant clinical impacts, either by increasing adverse effects or by decreasing the therapeutic effect of drugs, and thus, need to be explored thoroughly. Clinically significant drug interactions can be induced by organic anion transporter 1 (OAT1) and OAT3 when concomitant medications competitively interact with the transporters. The purposes of this study were to develop and validate a sensitive and selective analytical method for 5-carboxyfluorescein (5-CF) and optimize the experimental conditions for interaction studies. An analytical method using high-performance liquid chromatography (HPLC) equipped with a fluorescence detector was validated for accuracy, precision, matrix effect, recovery, stability, dilutional integrity, and carry-over effect. In addition, the 5-CF concentration, incubation period, and washing conditions for interaction study were optimized. Using a valid analytical method and optimized conditions, we performed an interaction study for OAT1 and OAT3 using 26 test articles. Some of the test articles showed strong inhibitory potency for the transporters, with IC50 values close to or less than 10μM. The valid analysis method and optimized systems developed in this study can be utilized to improve the predictability of drug interactions in humans and consequently aid in successful disease treatment by maintaining appropriate systemic exposures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.