The overexpression of NEU1 has recently been certified as being associated with myocardial infarction. However, the pursuit of an efficacious human NEU1 (hNEU1) inhibitor remains challenging, and viral NEU1 (viNEU1) inhibitor drugs are significantly weaker in terms of hNEU1 inhibition. Recognizing that hNEU1 is located within the lysosome, we designed a series of lysosome-targeting compounds, derived from oseltamivir, aimed at hNEU1 inhibition. Among these compounds, OsMo exhibits the most potent activity. Our findings reveal that OsMo accumulates within lysosomes and releases its pharmacophore via enzymatic catalysis. OsMo enhances hNEU1 inhibition by accumulating pharmacophores at the target site. OsMo exhibits improved regulation of abnormal autophagy during myocardial injury, demonstrating superior efficacy in treating myocardial infarction in vivo. Furthermore, OsMo exhibits acceptable pharmacokinetic parameters. Importantly, the development of molecules with lysosome-targeting abilities represents a promising avenue for addressing myocardial injuries linked to hNEU1 overexpression.