Abstract

Chronic myeloid leukemia is a hematopoietic stem cell cancer, originated by the perpetually "switched on" activity of the tyrosine kinase Bcr-Abl, leading to uncontrolled proliferation and insensitivity to apoptotic stimuli. The genetic phenotype of myeloid leukemic K562 cells includes the suppression of cytosolic sialidase Neu2. Neu2 transfection in K562 cells induced a marked decrease (-30% and -80%) of the mRNA of the anti-apoptotic factors Bcl-XL and Bcl-2, respectively, and an almost total disappearance of Bcl-2 protein. In addition, gene expression and activity of Bcr-Abl underwent a 35% diminution, together with a marked decrease of Bcr-Abl-dependent Src and Lyn kinase activity. Thus, the antiapoptotic axis Bcr-Abl, Src, and Lyn, which stimulates the formation of Bcl-XL and Bcl-2, was remarkably weakened. The ultimate consequences of these modifications were an increased susceptibility to apoptosis of K562 cells and a marked reduction of their proliferation rate. The molecular link between Neu2 activity and Bcr-Abl signaling pathway may rely on the desialylation of some cytosolic glycoproteins. In fact, three cytosolic glycoproteins, in the range 45-66 kDa, showed a 50-70% decrease of their sialic acid content upon Neu2 expression, supporting their possible role as modulators of the Bcr-Abl complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.