The profound influence of ATP-binding cassette (ABC) transporters on the disposition of numerous drugs has led to increased interest in characterizing their expression profiles in various epithelial and endothelial barriers. The present work examined the presence and functional activity of five ABC efflux proteins, i.e., MRP 1-5, in freshly isolated human nasal epithelial cells and two in vitro models based on the human RPMI 2650 cell line. To evaluate the expression patterns of MRP1, MRP2, MRP3, MRP4, and MRP5 at the mRNA and protein levels in the ex vivo model and the differently cultured RPMI 2650 cells, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, and indirect immunofluorescence staining were used. The functionality of the MRP transporters in the three models was assessed using efflux experiments and accumulation assays with the respective substrates and inhibitors. The mRNA and protein expression of all selected ABC transporters was detected in excised human nasal mucosa as well as in the corresponding cell culture models. Moreover, the functional expression of the MRP transport proteins was demonstrated in the three models for the first time. Therefore, the potential impact of multidrug resistance-associated proteins 1-5 on drug disposition after intranasal administration may be taken into consideration for future developments. The specimens of human nasal turbinate exhibited slightly lower efflux capacities of MRP1, MRP3, and MRP5 in relation to the submerged and ALI-cultured RPMI 2650 cells, but showed a promising comparability to both in vitro models concerning the activity of MRP2 and MRP4. In this regard, the different RPMI 2650 cell culture models will be able to provide useful experimental data in the preclinical phase to estimate the interaction of particular efflux transporters with drug candidates for nasal application.