Numerous studies of human motor control have examined the effects of constraints on the programming and execution of visually directed limb movements. Only a few studies, however, have explored how the subject's objective in making the movement affects the coordinated sequence of eye and limb movements that unfolds as the subject points to or grasps an object in space. In the present study, the characteristics of the targets and the environment remained constant while the demands for speed and accuracy were varied across blocks of trials by changing the instructions to the subject. In other words, the constraints operating in the situation were kept constant, but the objective of the movement was systematically varied by changing the relative demands for speed and accuracy. All subjects were required to point to visual targets presented on a screen in front of them. Eye position was monitored by infrared reflection. The position of each subject's hand in three-dimensional space was reconstructed by a computer-assisted analysis of the images provided by two rotary-shutter video cameras. The speed and accuracy demands of the task were varied in blocks of trials by requiring the subjects to point to the target "as quickly as you can" (speed condition); "as accurately as you can" (accuracy condition); or both "quickly and accurately" (speed/accuracy condition). The time to initiate an eye movement to the target was found to be reduced by increasing either the speed or accuracy demands of the task although the time to initiate the hand movement was reduced only in the speed condition. While the duration of the acceleration phase of the reach remained constant in real time, the duration of the deceleration phase was increased with increased demands for accuracy. As expected, both variable and absolute errors were largest in the speed condition. The findings indicated that the programming of the limb movement and its coordination with the associated eye movements were affected by varying the objective of the task.