To explore functional interconnections between multiple P450 enzymes and their manifestation in alcohol-induced changes in drug metabolism, we implemented a high-throughput study of correlations between the composition of the P450 pool and the substrate saturation profiles (SSP) of amitriptyline and ketamine demethylation in a series of 23 individual human liver microsomes preparations from donors with a known history of alcohol consumption. The SSPs were approximated with linear combinations of three Michaelis-Menten equations with globally optimized KM (substrate affinity) values. This analysis revealed a strong correlation between the rate of ketamine metabolism and alcohol exposure. For both substrates, alcohol consumption caused a significant increase in the role of the low-affinity enzymes. The amplitudes of the kinetic components and the total rate were further analyzed for correlations with the abundance of 11 major P450 enzymes assessed by global proteomics. The maximal rate of metabolism of both substrates correlated with the abundance of CYP3A4, their predicted principal metabolizer. However, except for CYP2D6 and CYP2E1, responsible for the low-affinity metabolism of ketamine and amitriptyline, respectively, none of the other potent metabolizers of the drugs revealed a positive correlation. Instead, in the case of ketamine, we observed negative correlations with the abundances of CYP1A2, CYP2C9, and CYP3A5. For amitriptyline, the data suggest inhibitory effects of CYP1A2 and CYP2A6. Our results demonstrate the importance of functional interactions between multiple P450 species and their decisive role in the effects of alcohol exposure on drug metabolism.
Read full abstract