Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out toinvestigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Read full abstract