To investigate the cytotoxic effect of multi-walled carbon nanotubes (MWCNTs) on human liver L02 cells and its relevant mechanism. MWCNTs, carboxyl modification MWCNTs (MWCNTs-COOH), and hydroxyl modification MWCNTs (MWCNTs-OH) were characterized by transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The carbon nanotubes at concentrations of 12.5, 25, 50, 100, and 200 μg/ml were incubated with human liver L02 cells for 24, 48 and 72 hours, respectively. The cell viability was evaluated by water soluble tetrazolium salts assay and the intercellular reactive oxygen species induced by the carbon nanotubes were detected by 2', 7'-dichlorodihydrofluorescein diacetate method. Transmission electron microscope showed that the average outside diameters (10 to 20 nm) and the average length (10 to 30 μm) of the three MWCNTs were similar. Scanning electron microscope indicated that the three MWCNTs had a similar surface topography. X-ray photoelectron spectroscopy demonstrated that the MWCNTs-COOH and MWCNTs-OH had relatively high peak areas at 289 and 286ev, respectively,indicating that they have been modified by carboxyl and hydroxyl groups,respectively. Water soluble tetrazolium salts assay showed that the MWCNTs-COOH was less cytotoxic when compared to MWCNTs which demonstrated to be slightly more cytotoxic than MWCNTs-OH. The capability to induce increase in intracellular reactive oxygen species was in the following order: MWCNTs > MWCNTs-COOH > MWCNTs-OH. Modification of MWCNTs with carboxyl group and hydroxyl group improves the biocompatibility of MWCNTs to some extents. MWCNTs-COOH has better compatibility than MWCNTs at the low concentration,and MWCNTs-OH showed better compatibility than MWCNTs after 48 hours. Different mechanisms may be involved in the interaction between cells and the MWCNTs with different chemical surfaces.
Read full abstract