Lactate dehydrogenase subunit A (LD-A) plays an important role in cancer regulation and therapy. We attempted to develop an enzyme-linked immune-solvent assay (ELISA) for LD-A in human serum. However, commercial antibodies against LD-A exhibited cross-reactivity with an unknown protein. The unknown protein was purified and characterized by protein sequencing and Western blotting. In addition, we attempted to prepare a specific antibody for the ELISA using partially synthesized peptides of LD-A as immunogens. The epitope position in LD-A was carefully selected based on bioinformatics analysis. Peptide sequencer elucidated a ten amino acid sequence of the purified protein at the N-terminal. A BLAST search revealed that this sequence perfectly matched that at the N-terminus of the IgG heavy chain (H-chain). Furthermore, we demonstrated that twelve commercially available antibodies targeting LD-A or LD-B (subunit B) primarily cross-reacted with IgG or its H-chain, with only one specific antibody for each subunit. As the specific antibody against LD-A is no longer commercially accessible, we successfully produced two kinds of specific antibodies using partially synthesized LD-A peptides as immunogens. In conclusion, we have successfully produced specific antibodies against LD-A. Moreover, our findings underscore the utility of bioinformatics tools for determining the optimal positions of immunizing peptides.
Read full abstract