Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders (HANDs) remain prevalent in HIV-1-infected individuals despite the evident success of combined antiretroviral therapy (cART). The mechanisms underlying HAND prevalence in the cART era remain perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent neurotoxin, plays a pivotal role in HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates HANDs, but how this occurs is not fully understood. We hypothesize that Meth exacerbates HANDs by enhancing gp120-mediated neuroinflammation. To test this hypothesis, we studied the effect of Meth on gp120-induced microglial activation and the resultant production of proinflammatory cytokines in primary rat microglial cultures. Our results show that Meth enhanced gp120-induced microglial activation, as revealed by immunostaining and Iba-1 expression, and potentiated gp120-mediated NLRP3 expression and IL-1β processing and release, as assayed by immunoblotting and ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of NLRP3 puncta and ROS production, increased the levels of iNOS expression and NO production, and increased the levels of cleaved gasderminD (GSDMD-N; an executor of pyroptosis) in gp120-primed microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor, or Mito-TEMPO, a mitochondrial superoxide scavenger. These results suggest that Meth enhances gp120-associated microglial NLRP3 activation and the resultant proinflammatory responses via mitochondria-dependent signaling.
Read full abstract