Abstract
Human immunodeficiency virus type-1 (HIV-1) infection is the reason for the epidemic of acquired immunodeficiency syndrome (AIDS). The development of HIV-1 fusion inhibitors has gained increasing attention as they were found to be effective in the early stage of HIV-1. DNA G-quadruplex-based inhibitors have been found to interact with HIV-1 envelope glycoprotein, showing anti-HIV-1 fusion activity. C-peptide-derived molecules with Met-Thr terminal also showed potent anti-fusion activity; the Met-Thr dipeptide adopted a hook-like structure (termed MT hook) in the hydrophobic pocket to "anchor" inhibitors to the N-terminal heptad repeat (NHR) of HIV-1 envelope glycoprotein gp41. Our work was aimed to conjugate MT hooks to the 5'-terminal ends of DNA quadruplex- based inhibitor and demonstrate its biophysical characterization and anti-HIV-1 fusion activity. A 6-aminohexanol phosphonamidite was utilized in solid synthesis for the conjunction of oligodeoxynucleotide and MT dipeptide. Hydrophobic groups were introduced by a nucleoside analogue from the base site. Circular dichroism spectrum and native polyacrylamide gel electrophoresis were used to confirm the helix formation. A cell-cell fusion assay was carried out to test the anti-fusion activity. The conjugate G1 showed improved anti-cell-cell fusion activity than quadruplex without MT hook. The MT hook did not affect the oligodeoxynucleotide (ODN) G-quadruplex assembly. It was also proved that G1 could effectively interfere with endogenous 6-helical bundle (6HB) formation between the N-terminal heptad repeat N36 (NHR) and the C-terminal heptad repeat C34 (CHR) during virus fusion course. In this work, a conjugate of DNA-oligopeptide was successfully synthesized. The conjugation of MT hook did improve the anti-fusion activity of DNA G-quadruplex-based inhibitors. Our results can provide information regarding structure-activity relationships of DNA helix-based inhibitors and a reference for the follow-up experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.