ObjectivesThe gingiva epithelium accounts for a significant proportion of the surface around the tooth. An inflammatory reaction occurs in the presence of bacterial biofilm, adhesion is reduced, and the depth of the sulcus gingivalis increases. The most common antiseptic agents in oral rinses are chlorhexidine digluconate (CHX) and cetylpyridinium chloride. We examined long-lasting effects of residual concentrations of eight commercially available rinses. Our main goals were (i) to analyze the effect of different chemical compositions on cell proliferation, (ii) to examine apoptosis, and (iii) cell morphology on human epithelial progenitor cell line (HGEPp).Materials and methodsCell proliferation was measured in a real-time system (0–48 h) by impedimetry (xCELLigence). Apoptosis was measured with labeled Annexin-V (BD-FACScalibur).ResultsChanges in proliferation were measured at certain concentrations: (i) H2O2 proved to be cytotoxic at almost all concentrations; (ii) low concentrations of CHX (0.0001%; 0.0003%) were proliferation inducers, while higher concentrations were cytotoxic; (iii) for ClO2, advantageous proliferative effect was observed over a broad concentration range (0.06–6 ppm). In mouthwashes, additives in the formulation (e.g., allantoin) appeared to influence cellular responses positively. Apoptosis marker assay results suggested a low-level activation by the tested agents.ConclusionsMouthwashes and their reference compounds proved to have concentration-dependent cytotoxic effects on human gingival epithelial cells.Clinical relevanceA better understanding of the effects of mouthwashes and their reference compounds is particularly important. These concentration-dependent effects (cytotoxic or proliferation inducing) interfere with human cells physiology while being used in the fight against the pathogenic flora.
Read full abstract