ObjectiveCypA had been identified as a potential therapeutic target to endometrial cancer in our previous research. Herein, we aimed to further elucidate the underlying comprehensive mechanisms of CypA knockdown-associated anticancer effects by cDNA microarray-based approach. MethodsLV-shCypA was constructed and transfected into HEC-1-B cells. The efficiency of CypA knockdown was determined by qRT-PCR and Western blotting. The migratory/invasive capacity was examined by transwell assay. CypA knockdown-induced comprehensive gene expression alterations were analyzed using NimbleGen Human Gene Expression Microarray consisting of 45,033 probes for human genes. Functional analysis of the microarray data was performed using KEGG and Gene Ontology analyses. The selected differentially expressed genes were validated by qRT-PCR. ResultsKnockdown of CypA by LV-shCypA led to a significant decrease of migratory/invasive cell proportions in HEC-1-B cells. Microarray analysis showed 3533 and 2772 genes to be up-regulated and down-regulated in CypA-knockdown cells, respectively. Functional analysis showed 50 up-regulated pathways and 14 down-regulated pathways in CypA-knockdown cells, and focal adhesion signaling was one of the most enriched down-regulated pathways. The expression patterns of 16 genes in focal adhesion signaling, which encoded MAPK kinases, focal adhesion kinase (FAK), integrin subunits and laminin subunits, were validated by qRT-PCR and the consistency percentage with microarray data reached 100%. ConclusionsSuppression of migratory/invasive capacity by CypA knockdown is likely associated with the down-regulation of focal adhesion signaling, which may contribute to the understanding of the role of CypA as a potential therapeutic target for endometrial cancer.
Read full abstract