Compounds that inhibit phosphodiesterase 5 (PDE5) have been developed for the treatment of erectile dysfunction. Because men with erectile dysfunction frequently have comorbid cardiovascular disease, they may have limited cardiac repolarization reserve and be at risk of arrhythmia if treated with medications that prolong ventricular repolarization. The human ether-a-go-go related gene (HERG) channel is important for repolarization in human myocardium and is a common target for drugs that prolong the QT interval. We studied the ability of three compounds that inhibit PDE5—sildenafil, tadalafil, and vardenafil—to block the HERG channel. Using a whole cell variant of the patch-clamp method, the HERG current was measured in a stably transfected human embryonic kidney cell line expressing the HERG channel. The compounds produced dose-dependent reductions in HERG current amplitude over a concentration range of 0.1 to 100 μM. The IC 50 values were 12.8 μM for vardenafil and 33.3 μM for sildenafil. Because the maximum soluble concentration of tadalafil (100 μM) produced only a 50.9% inhibition of the HERG current amplitude, the IC 50 value for tadalafil could not be determined with the Hill equation. Tadalafil had the weakest capacity to block the HERG channel, producing a 50.9% blockade at the maximum soluble concentration (100 μM), compared with 86.2% for vardenafil (100 μM) and 75.2% for sildenafil (100 μM). In conclusion, the concentrations of the PDE5 inhibitors required to evoke a 50% inhibition of the HERG current were well above reported therapeutic plasma concentrations of free and total compound. None of the three compounds was a potent blocker of the HERG channel.