Stent-related granulation tissue hyperplasia is a major complication that limits the application of stents in airways. In this study, an arsenic trioxide-eluting electrospun nanofiber-covered self-expandable metallic stent (ATO-NFCS) was developed. Poly-L-lactide-caprolactone (PLCL) was selected as the drug-carrying polymer. Stents with two different ATO contents (0.4% ATO/PLCL and 1.2% ATO/PLCL) were fabricated. The in vitro release in simulated airway fluid suggested that the total ATO release time was 1 d. The growth of human embryonic pulmonary fibroblasts (CCC-HPF-1), normal human bronchial epithelial cells and airway smooth muscle cells was inhibited by ATO. When embedded in paravertebral muscle, the nanofiber membrane showed good short-term and long-term biological effects. In an animal study, placement of the ATO-NFCS in the trachea through a delivery system under fluoroscopy was feasible. The changes in liver and kidney function 1 and 7 d after ATO-NFCS placement were within the normal range. On pathological examination, the heart, liver, spleen, lungs and kidneys were normal. The effectiveness of the ATO-NFCS in reducing granulation tissue hyperplasia and collagen deposition was demonstrated in the rabbit airway (n = 18) at 4 weeks. The present study preliminarily investigated the efficacy of the ATO-NFCS in reducing granulation tissue formation in the trachea of rabbits. The results suggest that the ATO-NFCS is safe in vivo, easy to place, and effective for the suppression of granulation tissue formation.