Human cytomegalovirus (HCMV) infection is a leading cause of morbidity and mortality in immunocompromised patients, but no specific therapeutic strategy is effective clinically, despite recent achievements. HCMV-specific T-cell therapy was thought to be helpful for the management of HCMV infection. To conduct a deep exploration, we investigated the possibility of engineering peripheral blood mononuclear cells (PBMCs) from immunocompetent and immunocompromised subjects with specific T-cell receptor (TCR) genes. CD8-positive T cells that specifically bind to NLV pentamers could be generated by transferring TCR genes to PBMCs from immunocompetent and immunocompromised subjects. The generation of functional T cells varied among transduction of different PBMCs. The numbers of IFN-γ-secreting T cells increased significantly in immunocompetent and immunodeficient PBMCs, but were unchanged in immune-reconstituted PBMCs. TCR gene transfer is a potential therapeutic strategy for controlling HCMV infection in immunocompromised patients. The transfer of TCR genes into immunocompetent and immunodeficient PBMCs would be more meaningful in response to HCMV infection than would the transfer into immune-reconstituted PBMCs.
Read full abstract