BackgroundXingpi Capsule (XP), a commercially available over-the-counter herbal medicine in China, plays a prominent role in treating diarrhea-predominant irritable bowel syndrome (IBS-D). Nevertheless, the potential mechanisms remain unclear. PurposeThis study aimed to investigate XP efficacy in IBS-D and elucidate the underlying molecular mechanisms. MethodsA rat IBS-D model was established by senna decoction gavage combined with restraint stress and swimming exhaustion. The changes in rat body weight and stool were recorded daily. Colon pathological changes and the number of colonic goblet cells of rats were observed by hematoxylin-eosin (HE) staining and Alcian blue plus periodic acid-Schiff (AB-PAS) staining, respectively. The expression of Occludin, a tight-junction-associated protein, was examined via immunohistochemistry. Images of colonic microvilli were obtained by TEM. Western blotting (WB) was used to analyze the protein expression of the ASK1/P38 MAPK pathway. The composition of the rat intestinal microbiota was detected by 16S rRNA sequencing. Changes in colonic metabolites were evaluated by liquid chromatography-mass spectrometry (LC-MS). Changes in colon RNA expression were assessed by RNA sequencing (RNA-Seq). The nontoxic range of hypoxanthine (HPX) was screened by Cell Counting Kit-8 (CCK8), the cell model of human colonic epithelial cells (NCM460) induced by lipopolysaccharide (LPS) was established, and the effective concentration of HPX was screened by CCK8. After transfection of pcDNA3.1-MAP3K5, Hoechst 33,342 staining, flow cytometry to detect cell apoptosis, and immunofluorescence to detect the fluorescence changes of ASK1 and ZO-1. WB detection of ASK1/P38 MAPK pathway protein expression changes. ResultsXP increased the body weight of IBS-D patients and reduced the loose stool rate, loose stool index, and Bristo score. In addition, XP mitigated colon lesions, increased the number of goblet cells and the expression of Occludin, and prevented severe distortion and effacement of the microvillous structure. Specifically, 16S rRNA gene sequence analysis showed that XP decreased the abundance of Desulfurium and Prevotella 9 at the phylum and genus levels while increasing the abundance of Bacteroides at the genus level. RNA-Seq combined with WB validation showed that XP exerted antidiarrheal effects by inhibiting the ASK1/P38 MAPK signaling pathway. Additionally, XP also increased the relative expression level of the metabolite HPX, as revealed by untargeted metabolomics analysis. Impressively, the correlation analysis between 16S rRNA sequencing and LC-MS suggested that HPX and Prevotella 9 are negatively correlated, which indicated that XP might increase the content of HPX by reducing the abundance of Prevotella 9. Meanwhile, a negative correlation between HPX and ASK1 was indicated through RNA-Seq and LC-MS, which suggested that the inhibition of ASK1 (Map3k5) may be ascribed to the increase in HPX after XP treatment. In vitro experiments have proven that HPX can alleviate LPS-induced NCM460 damage, specifically manifested as enhancing cell viability, reducing cell apoptosis, increasing ZO-1 expression, reducing the fluorescence intensity of MAP3K5 in the model group, and inhibiting the expression of ASK1/P38 MAPK pathway proteins. The protective effect of HPX was reversed after transfection with pcDNA 3.1-MAP3K5, which fully demonstrated that the protective mechanism of HPX was achieved by inhibiting MAP3K5 and its downstream pathways. ConclusionXP displayed multifaceted protection against IBS-D in rats by regulating the intestinal microbiota, increasing the relative expression level of HPX, a metabolite of the microbiota, and inhibiting the ASK1/P38 MAPK signaling pathway.
Read full abstract