Given the genetically heterogeneous nature of many dominantly inherited disorders, it will be imperative to design mutation-independent therapeutic strategies to circumvent such heterogeneity. Intragenic polymorphism represents a genomic resource that may be harnessed in the development of allele-specific mutation-independent therapeutics. A hammerhead ribozyme, Rzpol1a1, selectively cleaves a common single-nucleotide polymorphism (SNP) of the human COL1A1 transcript (heterozygosity frequency of 2 pq = 0.4032, from Hardy-Weinberg equilibrium). One SNP variant contains a hammerhead ribozyme cleavage site, and the other does not. Kinetic evaluation shows Rzpol1a1 to be both specific and extremely efficient in vitro. Thus, a single efficient ribozyme has been characterized that should be valuable in the development of a gene therapy suitable for up to 1 in 5 dominant-negative osteogenesis imperfecta (OI) patients, where over 150 different mutations have been identified to date. Given the increasing characterization of intragenic SNP, it is predicted that such a mutation-independent strategy, based on selective silencing of mutant alleles at SNP, may become increasingly important in future genomics-driven drug development for many heterogeneous dominant disorders and complex traits.